Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

The α-D anomer of 5-aza-7-deaza-2'-deoxyguanosine

Frank Seela, ${ }^{\text {a* }}$ Helmut Rosemeyer, ${ }^{\text {a }}$ Alexander Melenewski, ${ }^{\text {a }}$ Eva-Maria Heithoff, ${ }^{\text {b }}$ Henning Eickmeier ${ }^{\text {b }}$ and Hans Reuter ${ }^{\text {b }}$
${ }^{\text {a }}$ Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie, Universität Osnabrück, Barbarastraße 7, 49069 Osnabrück, Germany, and
${ }^{\mathbf{b}}$ Anorganische Chemie II, Institut für Chemie, Universität Osnabrück, Barbarastraße 7, 49069 Osnabrück, Germany
Correspondence e-mail: frank.seela@uni-osnabrueck.de

Received 29 August 2001
Accepted 21 December 2001
Online 13 February 2002

In the monohydrate of 2-amino-8-(2-deoxy- α-D-ery-thro-pentofuranosyl)-8H-imidazo[1,2-a][1,3,5]triazin-4-one, $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, denoted (I) or αZ_{d}, the conformation of the N-glycosylic bond is in the high-anti range [$\left.\chi=87.5(3)^{\circ}\right]$. The 2^{\prime}-deoxyribofuranose moiety adopts a C^{\prime}-endo, $\mathrm{C} 3^{\prime}-$ exo $\left({ }^{2} T_{3^{\prime}}\right)$ sugar puckering (S-type sugar) and the conformation at the $\mathrm{C} 4^{\prime}-\mathrm{C} 5^{\prime}$ bond is $-s c$ (trans).

Comment

5-Aza-7-deazapurines [imidazo[1,2-a][1,3,5]-triazines, e.g. (I)] can be formally constructed by transposition of the purine N-7 atom to the bridgehead 5-position (Seela \& Rosemeyer, 2002). 5-Aza-7-deaza-2'-deoxyguanosine [(II), purine numbering is used throughout discussion] (Rosemeyer \& Seela, 1987) is a structural analogue of both 2^{\prime}-deoxyguanosine and 7-deaza-2'deoxyguanosine. Therefore, it is isosteric with 2^{\prime}-deoxyguanosine but shows an altered Watson-Crick recognition site.

Within oligodeoxynucleotides, the β-d-configured 5-aza-7-deaza-2'-deoxyguanosine $\left[\beta Z_{d}\right.$, (II)] forms strong tridentate 'purine-purine' base pairs with 2^{\prime}-deoxyguanosine (neutral conditions), with parallel (ps) chain orientations (Seela \& Melenewski, 1999). However, antiparallel tridentate base pairs are formed between βZ_{d} and 2^{\prime}-deoxycytidine (dC)
under acidic (pH 5) conditions (Seela \& Melenewski, 1999). Duplexes with parallel strands can be formed when all the sugar moieties in one oligonucleotide strand are in an α-D configuration (Imbach et al., 1989). These oligonucleotides show nuclease resistance.

Nucleoside (I) was synthesized according to Rosemeyer \& Seela (1987) and crystallizes from water as the monohydrate (Fig. 1 and Table 1). The orientation of the nucleobase relative to the sugar (syn/anti) is defined by the torsion angle $\chi^{1}\left(\mathrm{O}^{\prime}-\right.$ $\mathrm{C} 1^{\prime}-\mathrm{N} 9-\mathrm{C} 4$) (IUPAC-IUB Joint Commission on Biochemical Nomenclature, 1983). The preferred conformation at the N-glycosylic bond in natural 2^{\prime}-deoxynucleosides is usually in the anti range $\left(-150^{\circ} \leq \chi^{1} \leq-140^{\circ}\right)$. For an α-D nucleoside, the 'perfect' anti range is $140^{\circ} \leq \chi^{1} \leq 150^{\circ}$. In the case of compound (I), χ^{1} is $87.5(3)^{\circ}$. This indicates that the title compound adopts a high-anti conformation, with the $\mathrm{C}^{\prime}-\mathrm{C}^{\prime}$ and $\mathrm{N} 9-\mathrm{C} 8$ bonds nearly eclipsed [torsion angle $\mathrm{C1}^{\prime}-\mathrm{C}^{\prime}-$ $\left.\mathrm{N} 9-\mathrm{C} 8=30.3(4)^{\circ}\right]$.

This conformation is quite unusual. It is displayed by 8 -azapurine-2'-deoxy- β-d-ribofuranosides and 8 -aza- 7 -deaza-purine-2'-deoxy- β-D-ribofuranosides, where it is attributed to Coulombic repulsion between non-bonding electron pairs at O4' and N8 (Seela et al., 1999, 1999a,b). The β-d-ribonucleoside of 5-aza-7-deazaguanine shows an anti conformation. The reason for the difference between the β-D-ribonucleoside and the α-D-2'-deoxyribonucleoside is still unknown.

The $\mathrm{C} 2^{\prime}$-endo (N) and C^{\prime}-endo (S) puckerings are the most frequently observed sugar-ring conformations of nucleosides. Among these, 2^{\prime}-deoxy- α-D-ribonucleosides often show C^{\prime} endo sugar puckering with either a half-chair or envelope conformation (Seela et al., 1999a; Hamor et al., 1977; Revankar et al., 1990; Leumann et al., 1995; Marfurt et al., 1996). The puckering of the deoxyribose ring of (I) is C^{\prime} endo, C^{\prime} '-exo $\left({ }^{2^{\prime}} T_{3^{\prime}}\right)$, with $P=177.43^{\circ}$ and $\tau_{m}=30.5^{\circ}$ (Rao et al., 1981). The $\gamma\left(\mathrm{O}^{\prime}-\mathrm{C}^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{C} 3^{\prime}\right)$ torsion angle is $-71.6(3)^{\circ}$, which corresponds to $-s c$, a conformation often found in nucleosides with ${ }^{2^{\prime}} T_{3^{\prime}}$ sugar puckering. The confor-

Figure 1
Perspective view of the α-D anomer of 5-aza-7-deaza-2'-deoxyguanosine monohydrate. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii. One H atom of the water molecule is eclipsed.

Figure 2
Detail of the hydrogen bonding within one monolayer in the crystal structure of (I).
mational parameters of (I) in the crystal are generally identical to those in solution (Seela et al., 2001).

The base moiety of (I) is nearly planar. The average deviation of the ring atoms from the least-squares plane is $\pm 0.014 \AA$. The ring substituents were not used for calculation of the plane; they deviate as follows: amino $\mathrm{N} 2-0.061 \AA$ and carboxy O6 $0.004 \AA$. In the crystalline state, the structure of (I) is stabilized by several hydrogen bonds (listed in Table 2 and shown in Fig. 2), leading to the formation of double layers. Within each monolayer, the molecules of (I) are interconneted with each other and the water molecules by four strong hydrogen bonds: $\mathrm{N} 2-\mathrm{H} 22 \cdots \mathrm{O} 6, \mathrm{~N} 1-\mathrm{H} 11 \cdots \mathrm{O} 1, \mathrm{O} 1 \cdots \mathrm{H}^{\prime}-$ O^{\prime} and $\mathrm{O} 1 \cdots 5^{\prime}-\mathrm{H} 5^{\prime}$. Because of steric hindrance, however, the second H atom of the NH_{2} group can only form a weak hydrogen bond, $\mathrm{N} 2-\mathrm{H} 21 \cdots \mathrm{O}^{\prime}$, which is characterized by a narrow angle at the H atom and a long donor-acceptor distance. Only one hydrogen bond exists between two of these monolayers, $\mathrm{O} 1-\mathrm{H} 12 \cdots \mathrm{~N} 3$; this is also weak and connects the water molecule with the nucleoside in the neigbouring layer and vice versa.

Experimental

The title compound was prepared according to Rosemeyer \& Seela (1987) and was recrystallized from water.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O} \\
& M_{r}=285.27 \\
& \text { Monoclinic, } P 2_{1}{ }_{1} \AA \\
& a=8.5397(14) \AA \\
& b=7.1025(14) \AA \\
& c=10.7187(16) \AA \\
& \beta=107.460(13))^{\circ} \\
& V=620.17(18) \AA^{3} \\
& Z=2
\end{aligned}
$$

Data collection

Siemens $P 4$ diffractometer
$2 \theta / \omega$ scans
Absorption correction: empirical
via ψ scan (SHELXTL; Shel-
drick, 1997a)
$T_{\text {min }}=0.296, T_{\text {max }}=0.359$
2526 measured reflections
1194 independent reflections
1123 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.049 \\
& \theta_{\max }=25.0^{\circ} \\
& h=-10 \rightarrow 10 \\
& k=-8 \rightarrow 8 \\
& l=-12 \rightarrow 12 \\
& 3 \text { standard reflections } \\
& \text { every } 97 \text { reflections } \\
& \text { intensity decay: none }
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.076$
$S=1.09$
1194 reflections
204 parameters
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0256 P)^{2}\right.$
$\quad+0.0846 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.13 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.041 (4)
Absolute structure: Flack (1983)
Flack parameter $=-0.9$ (17)

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 6$	$1.337(4)$	$\mathrm{C} 8-\mathrm{N} 9$	$1.404(4)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.350(4)$	$\mathrm{N} 9-\mathrm{C}^{\prime}$	$1.461(4)$
$\mathrm{C} 2-\mathrm{N} 2$	$1.326(4)$	$\mathrm{C}^{\prime}-\mathrm{O}^{\prime}$	$1.408(3)$
$\mathrm{C} 2-\mathrm{N} 3$	$1.364(3)$	$\mathrm{C}^{\prime}-\mathrm{C}^{\prime}$	$1.525(3)$
$\mathrm{N} 3-\mathrm{C} 4$	$1.318(4)$	$\mathrm{C}^{\prime}-\mathrm{C}^{\prime}$	$1.518(3)$
$\mathrm{C} 4-\mathrm{N} 9$	$1.349(3)$	$\mathrm{C}^{\prime}-\mathrm{O}^{\prime}$	$1.419(4)$
$\mathrm{C} 4-\mathrm{N} 5$	$1.354(4)$	$\mathrm{C}^{\prime}-\mathrm{C}^{\prime}$	$1.518(4)$
$\mathrm{N} 5-\mathrm{C} 7$	$1.397(4)$	$\mathrm{C}^{\prime}-\mathrm{O}^{\prime}$	$1.452(3)$
$\mathrm{N} 5-\mathrm{C} 6$	$1.406(3)$	$\mathrm{C}^{\prime}-\mathrm{C}^{\prime}$	$1.513(4)$
$\mathrm{C} 6-\mathrm{O} 6$	$1.222(4)$	$\mathrm{C}^{\prime}-\mathrm{O}^{\prime}$	$1.426(3)$
$\mathrm{C} 7-\mathrm{C} 8$	$1.329(5)$		
$\mathrm{H} 11-\mathrm{O} 1-\mathrm{H} 12$	$104(2)$		$30.0(4)$
			$-71.9(3)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 9-\mathrm{C} 4$	$0.8(3)$	$\mathrm{C} 8-\mathrm{N} 9-\mathrm{C}^{\prime}-\mathrm{C}^{\prime}$	
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 9-\mathrm{C} 1^{\prime}$	$178.7(3)$	$\mathrm{C} 3^{\prime}-\mathrm{C}^{\prime}-\mathrm{C}^{\prime}-\mathrm{O}^{\prime}$	
$\mathrm{C} 4-\mathrm{N} 9-\mathrm{C} 1^{\prime}-\mathrm{O} 4^{\prime}$	$87.6(3)$		

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N2-H22 \cdots O6 ${ }^{\text {i }}$	0.914 (18)	1.864 (19)	2.775 (4)	175 (3)
$\mathrm{O}^{\prime}-\mathrm{H}^{\prime} 1 \cdots \mathrm{O} 1^{\text {i }}$	0.83 (2)	2.06 (2)	2.889 (4)	176 (3)
$\mathrm{N} 2-\mathrm{H} 21 \cdots \mathrm{O}^{\prime \text { 'ii }}$	0.914 (18)	2.35 (3)	3.073 (3)	135 (4)
$\mathrm{O} 1-\mathrm{H} 11 \cdots \mathrm{~N} 1^{\text {iii }}$	0.802 (14)	1.993 (16)	2.782 (3)	168 (3)
$\mathrm{O} 1-\mathrm{H} 12 \cdots \mathrm{~N} 3^{\text {iv }}$	0.802 (14)	2.35 (3)	3.010 (3)	140 (4)
$\mathrm{O} 3^{\prime}-\mathrm{H} 3^{\prime} 2 \cdots \mathrm{O} 1$	0.83 (2)	1.93 (3)	2.713 (3)	156 (4)

Symmetry codes: (i) $x, 1+y, z$; (ii) $x-1, y, z-1$; (iii) $1+x, y, 1+z$; (iv) $1-x, y-\frac{1}{2}, 1-z$.

In the absence of suitable anomalous scatterers, the measured Friedel data ($h \bar{k} l, h \overline{k l}, \bar{h} k l, \bar{h} k \bar{l}$) could not be used to determine the absolute structure. However, comparison with the known configuration of the parent molecule indicated that the proposed configuration was correct. Friedel-opposite reflections were merged. All H atoms were found in a difference Fourier synthesis and were included in the structure model in the usual fashion; H atoms on C atoms were positioned geometrically and allowed for as riding ($\mathrm{C}-\mathrm{H}=0.93-$ $0.98 \AA$), and H atoms on O and N atoms were refined freely with restraints.

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 1997a); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997b); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997b); molecular graphics: DIAMOND (Brandenburg, 1999) and SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1477). Services for accessing these data are described at the back of the journal.

References

Brandenburg, K. (1999). DIAMOND. Release 2.1c. Crystal Impact GbR, Bonn, Germany.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Hamor, T. A., O’Leary, M. K. \& Walker, R. T. (1977). Acta Cryst. B33, 12181223.

Imbach, J.-L., Rayner, B. \& Morvan, F. (1989). Nucleosides Nucleotides, 8, 627648.

IUPAC-IUB Joint Commission on Biochemical Nomenclature (1983). Eur. J. Biochem. 131, 9-15.
Leumann, C., Lubini, P. \& Bolli, M. (1995). Helv. Chim. Acta, 78, 2077-2096.

Marfurt, J., Stulz, E., Trafelet, H. U., Zingg, A., Leumann, C., Hazenkamp, M., Judd, R., Schenker, S., Strouse, G., Ward, T. R., Förtsch, M., Hauser, J. \& Bürgi, H.-B. (1996). Acta Cryst. C52, 713-716.
Rao, S. T., Westhof, E. \& Sundaralingam, M. (1981). Acta Cryst. A37, 421-425.
Revankar, G., R., Hanna, N. B., Ramasamy, K., Larson, S. B., Smee, D. F., Finch, R. A., Avery, T. L. \& Robins, R. K. (1990). J. Heterocycl. Chem. 27, 909-918.
Rosemeyer, H. \& Seela, F. (1987). J. Org. Chem. 52, 5136.
Seela, F., Amberg, S., Melenewski, A. \& Rosemeyer, H. (2001). Helv. Chim. Acta, 84, 1996-2014.
Seela, F., Becher, G., Rosemeyer, H., Reuter, H., Kastner, G. \& Mikhailopulo, I. A. (1999). Helv. Chim. Acta, 82, 105-124.

Seela, F. \& Melenewski, A. (1999). Eur. J. Org. Chem. pp. 485-496.
Seela, F. \& Rosemeyer, H. (2002). Recent Advances in Nucleosides: Chemistry and Chemotherapy, edited by D. C. K. Chu. Amsterdam: Elsevier Press. In the press.
Seela, F., Zulauf, M., Reuter, H. \& Kastner, G. (1999a). Acta Cryst. C55, 15601562.

Seela, F., Zulauf, M., Reuter, H. \& Kastner, G. (1999b). Acta Cryst. C55, 19471950.

Sheldrick, G. M. (1997a). SHELXTL. Release 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997b). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1996). XSCANS. Release 2.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

